Log in


  • Home
  • Demystifying the drop-outs in single cell RNA-seq data

Donation goal

0%
Goal:
$500.00
Collected:
$0.00

Demystifying the drop-outs in single cell RNA-seq data

  • Fri, August 28, 2020
  • 09:00 - 10:00
  • ttps://www.youtube.com/watch?v=D-cEpmrwF2s

Time: 9:00 AM - 10:00 AM PDT (12:00 PM - 1:00 PM EST), Friday, Aug. 28, 2020

Online Video Review:https://www.youtube.com/watch?v=D-cEpmrwF2s

Zoom.us link will be sent 24 hours before the event.

Abstract: Droplet-based single-cell RNA-sequencing (scRNA-seq) methods have changed the landscape of genomics research in complex biological systems by producing single cell resolution data at affordable costs. In the state-of-the-arts protocols, a step called barcoding unique molecular identifiers (UMI) has been introduced to remove amplification bias and further improve data quality. Recent literature suggests that barcoding has led to a different error structure in the count data with much less technical noise. Regardless, many tools do not acknowledge the differences between the read count data and UMI count data, still assuming that both suffer from excessive technical noise. In this presentation, I will make a brief overview of scRNA-seq data analysis pipelines and then present extensive analyses of publicly available UMI data sets that challenge the assumptions of most existing pre-processing tools. Our results suggest that resolving cell-type heterogeneity should be the foremost step of the scRNA-seq analysis pipeline. Normalizing or imputing the data set before resolving the heterogeneity can lead to adversary consequences in downstream analysis. As a result, we provide a new perspective on scRNA-seq data analysis by fully integrating pre-processing and clustering, which was classified as part of the downstream analysis. The proposed procedures have been implemented in software, HIPPO. If time permits, I will also talk about other single cell analysis tools developed in my group, VIPER, an imputation method for SMART-seq data, and dmatch, an alignment tool for multiple scRNA-seq samples batch correction.




Biosketch:  Mengjie Chen is an assistant professor in Section of Genetic Medicine in the Department of Medicine and the Department of Human Genetics at the University of Chicago. Before joining U Chicago, she was an assistant professor in the Department of Biostatistics and Genetics at UNC-Chapel Hill from 2014 to 2016. She obtained her PhD in Computational Biology and Bioinformatics from Yale University in 2014 with Drs. Hongyu Zhao and Haifan Lin. Dr. Chen was a recipient of the Alfred P. Sloan Research fellowship in Computational and Molecular Evolutionary Biology in 2019. As a computational biologist and statistician by training, Dr. Chen’s research bridges statistical methodological advances and biomedical applications. Her group develop computational methods and open source tools to address challenges posed by high-throughput technologies for data analysis and interpretation. Currently, her research is focused on single cell genomics and epitranscriptomics.



文本转语音功能仅限200个字符
选项 : 历史 : 反馈 : Donate 关闭



@Dahshu 2020

文本转语音功能仅限200个字符
选项 : 历史 : 反馈 : Donate 关闭
G
M
T
Y
文本转语音功能仅限200个字符
Powered by Wild Apricot Membership Software